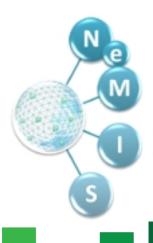
# Sobig Data Research Infrastructure


Social Mining & Big Data Analytics

#### FLARE: a flexible workflow language for research Infrastructure



Leonardo Candela, Fosca Giannotti, Valerio Grossi, Paolo Manghi, Roberto Trasarti

ISTI CNR, Pisa Italy



#### **Research E-infrastructure**

**Systems of systems**, patchworks of tools, services and data sources, evolving over time to address the needs of the scientific process.

Scientists implement their processes by hybrid workflows whose steps include:

- Use of web applications
- Download and use of software libraries or tools
- Use of workflow execution engines
- Other..

#### Use case

#### **Repeating scientific workflows in Research e-Infrastructures**

A scientist runs her experiments within an e-Infrastructure. She uses a variety of tools and services integrated by the e-Infrastructure to produce research data and methods. Once her experiment is concluded, the scientists has identified the *hybrid workflow steps* she went through and would like to pin them down, for her and others to repeat the experiment.

## Workflow Languages and RI Hybrid Workflows

| WF Business Languages                                                   | WF Execution Languages                                                           |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Workflows represent a set of logical steps to be interpreted by a human | to be interpreted by a machine (e.g. BPEL,                                       |
| Research Infrastructures:                                               | Taverna)<br>Research Infrastructures:                                            |
| <i>pros</i> : scientists may describe and share hybrid workflows        | <i>pros</i> : scientists are provided with tools to create and execute workflows |
| cons: scientists are not provided with                                  | cons: such workflows cannot be hybrid,                                           |
| tools for hybrid workflows execution                                    | must be made of <i>uniform and</i><br>interpretable steps                        |
| Recieve Order                                                           | File Reader Domain Calculator Partitioning                                       |

#### **FLARE**

#### A FLexible workflow IAnguage for REsearch

Addresses the problem of supporting sharing and repeatability of hybrid workflows in highlyheterogeneous e-Infrastructures

Lays in between *business process modeling languages*, and *workflow execution languages* 

#### **FLARE Steps**

FLARE steps model typical Research e-Infrastructure steps, which may include:
•Tools (to be downloaded): the execution of the step requires the user to download and execute the tool on its own premises;

- •*Web-accessible services* (SOAP or REST): the execution of the step requires a call to the service that is operated by a provider;
- •*Web-accessible applications* (tools accessible via user interfaces from the web): the execution of the step requires accessing the web user interface;
- •*Executable workflows*: the execution of the step requires invoking the respective workflow execution engine.
- •Scientific process workflows: indeed workflows can be obtained by combining, i.e. nesting, other workflows.

### **FLARE: Language Operators**

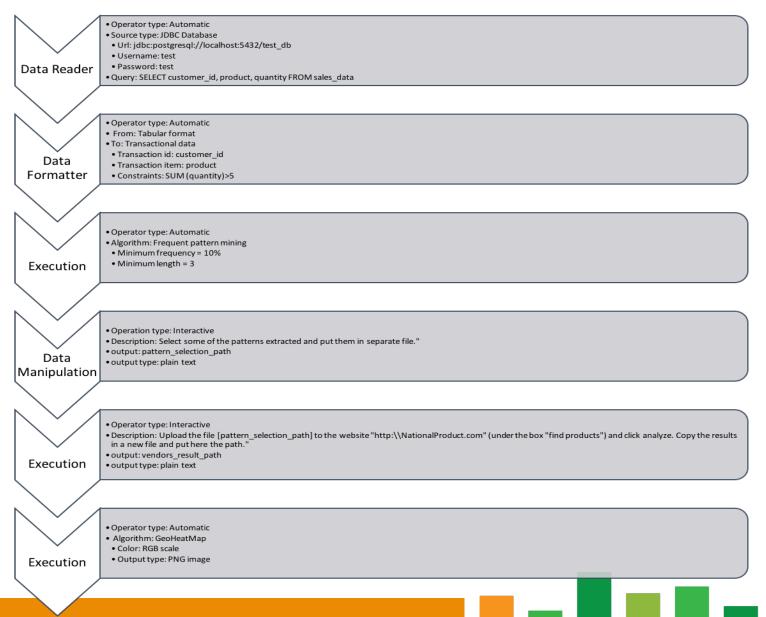
#### **Data management operators**

- Data reader: to provide input to execution operator
- Data manipulation (and formatting): to prepare the input to an execution operator
- Data writer: to specify where to store the output of an execution or data manipulation operator

**Step execution operators**: An external algorithm is executed specifying the parameter and the data source (if required).

**Workflow control**: define the execution flow of the process, i.e conditional, loops, variable, etc.

#### **Data Managment**


The data management, in particular the readers and writers, operators in FLARE are classified by different types of data sources:

- JDBC Database: using the JDBC interface is possible to link a generic database
- **Registered Database**: the infrastructure give the possibility to register a database, in that case the operator specify only its alias to access to it
- Workspace object: the Research infrastructure might be equipped with several services offering access to stored objects, such as files and data streams
- External file: using FTP (File Transfer Protocol)
- Interactive insertion: This operator allow the user to upload manually the data to be used in several formats, e.g. plain text, tabular, XML, etc.

#### **Step execution**

- Internal execution (automated) the operator requires the name of the "method" (and relative parameters) to be executed by the infrastructure
- External execution (manual): the operator requires the external link to a service and a description on how to interact with it; examples are web-services and web applications (i.e. portals for interactive sessions)

### **Example of FLARE workflow**



## **Snippets of code (1)**

city = interactive Insertion {Interactive, Description="Select a city to be analyzed"}

city\_data = Data Reader {Automatic, Registered
Database, alias="dataRepository", query="Select \* from
GPS\_data where city='"+city+"'"}

## **Snippets of code (2)**

city\_geometry = city + "\_geometry"

**External Execution** {Interactive, Decription="Go to http:// kdd.isti.cnr.it/uma2/?city=city to see the statistics generated by the Urban Mobility Atlas. Select from the toolbar 'in' and 'systematic' to see the traffic generated by commuters entering in "+ city + ". Do the same selecting 'out' and 'systematic'. Determine the areas you are interested in (e.g. the one with higher volume of traffic) and create a set of (postgres) geometry in a file representing them. Upload the file as "+city\_geometry}

### **FLARE: workflow execution**

Workflow descriptions can be created and executed by the RI via GUIs

- **Creation**: the GUI allows scientists to select the steps, complete their descriptions, and organize them into pipelines
- Execution: the GUI, given a workflows, drives the scientist through its execution, by automatically executing the internal steps and guiding the scientists at the execution of external steps

#### **Future Work**

The scenario presented is a starting point on which building a workflow language that allows the representation and reproducibility of a scientific process in a research e-infrastructure.

FLARE will be the scientific process workflow language of **SoBigData.eu** Research Infrastructure, which builds on the **D4Science.org** e-infrastructure platform.

The idea is to extend an existing language such as R or Knime to reach the flexibility proposed.